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ABSTRACT 
 
In this paper, the simulation of the interaction between three-dimension 
solitary wave and horizontal plate is investigated using the moving 
particle semi-implicit and finite element coupled method (MPS-FEM). 
The MPS method is used to calculate the fluid domain, while the FEM 
is adopted to solve the structure domain. The simulation of solitary 
wave slamming onto the flexible plate is initially conducted, the effects 
of wave amplitude and plate elevation on the wave-induced impact force 
are investigated. The interaction between wave and flexible plate is 
finally compared with that regarding the rigid plate to study the 
contribution of the structural flexibility to the wave-induced force and 
energy dissipation. 
 
KEY WORDS:  Moving Particle Semi-Implicit; MPS-FEM coupled 
method; fluid–structure interaction (FSI); wave-induced force. 
 
INTRODUCTION 
 
Plate-like offshore structures, such as the pier, jetty and very large 
floating structure (VLFS), are vulnerable to fluid impact loads. 
Especially the VLFS, whose stiffness is relatively small, presents the 
similar behavior to that of a flexible plate above the water surface. 
When encountering extreme wave, the plate may produce elastic 
vibration and considerable deformation which would bring the new 
challenges for the structural safety. The study of Fluid-Structure 
interaction (FSI) problems due to the fluid impact loads onto the 
structures, becomes of paramount importance in the field of naval 
architecture and ocean engineering.  
 
Experimental studies in FSI problems are scarce and there are only a 
few papers involved these problems, e.g. Cox et al. (2002), Guomo et al. 
(2007) and Nelli et al. (2017). In addition, various numerical methods 
have been conducted in order to simulate FSI problems. By using finite 
element method, Irahpanah (1983) simulated the impact of wave on 
horizontal platform, analyzed the wave-induced load at the bottom of 
the deck. Seiffert et al. (2014), based on finite volume method, 

simulated the solitary wave impacting on a horizontal plate with the 
help of an open source CFD software – OpenFOAM. The influence of 
the depth of the numerical flume, the plate elevation and the wave 
amplitude are investigated, the obtained results agreed well with the 
experiment data. However, there are much fewer FSI analysis about 
flexible plates. Liu et al. (2002) combined the boundary element 
method (BEM) and FEM to investigate the hydroelastic response of 
two-dimensional elastic plate under wave-induced force. Liao and Hu 
(2013) applied a coupled FDM–FEM method to investigate the 
interaction between surface flow and thin elastic plate, and obtained 
good results. Nelli (2017) conducted the experiment of the wave 
impacting a thin flexible plate, to analyze the reflection and 
transmission of regular incident water waves. It can draw a conclusion 
that the amplitude was attenuated due to the green water and wave 
breaking, and the attenuation is small when the plate is more flexible. 
Liu et al. (2018) conducts the quasi-static and dynamic tensile tests and 
plate impact experiments, demonstrates that the strain rate effect varies 
with the plastic strain and provides a practical advice for ship collision 
assessments. 
 
Despite the effectiveness, these mesh-based methods may suffer from 
the difficulties such as the adjustment and regeneration of mesh while 
coordinating the interface between fluid and solid domain. Therefore, 
some newly mesh-free particle methods have drawn a great deal of 
attention. In contrast with the mesh-based method, these mesh-free 
methods are inherently Lagrangian methods, by which a continuum is 
discretized into moving particles, so that the calculation of the 
numerical dissipation of the convection term is avoided. In addition, the 
meshfree particle methods avert the treatment of mesh or the capture of 
free surface. Thus, meshfree particle methods can deal with the large 
deformation and strong nonlinear phenomenon of free surfaces with 
relative ease, as well as the moving boundaries. SPH (Smoothed 
Particle Hydrodynamics) proposed by Lucy (1977), is a traditional 
meshfree method, which was first applied in astrophysics. Subsequently, 
SPH has been developed more actively, and has been applied to 
incompressible flow and FSI problems in Antoci et al. (2007). In 
addition, some scholars managed to combine SPH with other methods 
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to solve the FSI problems. The SPH–FEM coupling method has been 
first proposed by Attaway et al. (1994) to investigated structure-
structure interaction, but it was used in FSI problems soon afterwards 
(Fourey et al. 2012; Yang et al. 2012; Long et al. 2016). The MPS 
(Moving Particle Semi-implicit) proposed by Koshizuka and Oka 
(1996), is another typical particle-based meshfree method. Compared 
with the SPH, the pressure of the particle is obtained by solving the 
Poisson's pressure equation (PPE) in the MPS method. Thus, the 
obtained pressure field through MPS method is relatively smoother. 
MPS was later applied into the field of ocean engineering (Gotoh and 
Khayyer. 2016). Some preliminary researches corresponding to FSI has 
been conducted on the basis of the MPS method. The FEM method is a 
general choose to combine, in order to address complicated FSI 
problem. Lee et al. (2007) successfully simulated the interaction 
between dam-break and sloshing flow through the coupled MPS-FEM 
method. Some other research performing the MPS-FEM model 
(Mitsume et al. 2014; Hwang et al. 2014; Hwang et al. 2016; Zhang et 
al. 2016a) also displayed fair agreement with available experimental 
results. 
 
The objective of the present paper is to investigate the slamming on a 
3-D flexible plate induced by solitary wave using the MPS-FEM 
coupled method. A number of cases should be conducted because of the 
uncertainty regarding their occurrence and scale. The outline of the 
present paper is shown as follows. The theories of MPS, FEM and 
coupling strategy are briefly introduced. Subsequently, the simulation 
of 3-D solitary wave slamming onto the flexible plate is conducted, the 
effects of wave amplitude and plate elevation on the wave-induced 
impact force are investigated. Finally, the interaction between wave and 
flexible plate is finally compared with the rigid plate to study the 
contribution of the structural flexibility to the wave-induced force and 
energy dissipation. 
 
NUMERICAL METHOD 
 
In this study, the MPS-FEM coupled method is adopted to investigate 
the wave-plate interaction problem. The MPS method is used to 
calculate the fluid domain, while the FEM is adopted to solve the 
structure domain. Specifically, the 4-node thin plate element is 
employed in the FEM calculation, and a partitioned coupling strategy is 
adopted to unite the two methods. The theory for the MPS and FEM 
have been presented with details in our previous papers (Zhang and 
Wan, 2012; Zhang et al., 2014; Tang et al., 2015; Tang et al., 2016; 
Zhang et al., 2016b; Zhang and Wan. 2017; Zhang and Wan. 2018). 
These are introduced briefly in this section. 
 
MPS formulation for fluid dynamics 
 
The governing equations of the MPS method for viscous 
incompressible fluid can be expressed in Lagrangian form as following:  

0∇⋅V =  (1)

2D 1
D

P
t

ν
ρ

= − ∇ + ∇ +V V g  (2)

where V, ρ, P, ν and g denote the velocity vector, the fluid density, the 
pressure, the kinematic viscosity and the gravitational acceleration. The 
kernel function in present paper can be formulated as: 
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where | |j ir = −r r  is the distance between particle i and j, and re denotes 
the influence radius of the target particle. In MPS, the models of 
particle interaction involve the gradient, divergence, and Laplacian 

models. They are written as Eq. (4), Eq. (5) and Eq. (6). 

0 2 ( ) (| |)
| |

j i
j i j ii

j i j i

D W
n

φ φ
φ

≠

+
∇ = − ⋅ −

− r r r r
r r

 (4)

( ) ( )
2 (| |)

| |0
D W
n ≠

− ⋅ −
∇ ⋅ = −

− j i j i
j ii

j i j i

V V r r
V r r

r r
 (5)

2
0

2 ( ) (| |)j i j ii
j i

D W
n

φ φ φ
λ ≠

∇ = − ⋅ − r r  (6)

( )
( )

2

j i j i
j i

j i
j i

W

W
λ ≠

≠

− −
=

−





r r r r

r r
 (7)

where D is the dimension number, r is the position vector, and 0n is the 
initial density of the particle number and defined as: 
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The pressure fields are obtained through solving the PPE. In present 
paper, the mixed source term method is employed combined with a 
velocity divergence-free condition and a constant particle number 
density (Tanaka et al., 2010 and Lee et al., 2011) as following: 
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where ∆t denotes the calculation time step, k and k+1 indicate the 
physical quantity in the k th and k+1 th time steps, and γ is the weight 
of the particle number density term between 0 and 1. In this paper, γ 
=0.01 is selected for all numerical experiments.  
 
FEM formulation for structure dynamics 
 
Based on FEM theory, the spatially discretized structural dynamic 
equations, which govern the motion of structural nodes, can be 
formulated as: 

t+ + =M C K ( ) y y y F  (10)

1 2α α= +MC K  (11)
where M, C, K denote the mass matrix, the Rayleigh damping matrix, 
and the stiffness matrix of the structure, respectively. F is the external 
force vector that acts on the structure and varies with computational 
time. y is the displacement vector of the structure element node. 1α  and 

2α  are coefficients related to the natural frequency and the damping 
ratios of the structure.  
 
According to Newmark (1959), the structural node displacement at 
t=t+∆t can be solved with the help of Taylor’s expansions of velocity 
and displacement: 
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where β and γ are paramount parameters in the Newmark-β method and 
are set as β=0.25, γ=0.5 for all simulations. Then the displacement at 
t=t+∆t is proposed by Hsiao et al. (1999): 

t t t t+Δ + Δ=K y F  (14)

0 1a a= + +K K M C  (15)

0 2 3 1

4 5

t t t t t t t

t t

a a a a
a a

+Δ = + + + + +
+

M( ) C(
)

 
 

F F y y y y
y y

 (16)

47



0 1 2 32

4 5 6 7

1 1 1, , , 1,
2

1, ( 2), (1 ),
2

a a a a
t t t

ta a a t a t

γ
β β β β
γ γ γ γ
β β

= = = = −
Δ Δ Δ

Δ= − = − = Δ − = Δ
 (17)

where K and F denote the effective stiffness matrix and effective force 
vector. Subsequently, the accelerations and velocities related to the next 
time step are updated as follows: 

0 2 3( )t t t t t t ta a a+Δ +Δ= − − −  y y y y y  (18)

6 7t t t t t ta a+Δ +Δ= + +   y y y y  (19)
 
Coupling strategy for MPS-FEM coupled method 
 
In this study, the weak coupling between MPS and the FEM method is 
implemented. The time step sizes for structure and fluid analyses are ∆ts 
and ∆tf, respectively. Due to the stability of Newmark-β scheme, ∆ts can 
be longer than ∆tf, so that ∆ts is k multiples of ∆tf, where k is an integer. 
The interaction procedure can be summarized as follows: 
1) The pressure of the fluid wall boundary particle is calculated at each 
fluid time step. Then the pressure should be averaged during ∆ts, to 
obtain the external force on the element node, as follows: 

1
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where 1np + is the pressure of the fluid particle on the wall boundary at the 
instant ft i t+ Δ , and 1np + is the average pressure of the fluid particle 

within stΔ . 
2) The values of structural nodal position ty , velocity ty , and acceleration

ty can be determined based on the previous time step. 
3) The external force vector

st t+ΔF of the structural boundary particles is 

calculated by multiplying the average pressure 1np + and the influential 
area, which equals the square of the initial particle spacing dp. 

2
1st t np dp+ Δ += ⋅F  (21)

4) The structural nodal displacements and velocities at next structural 
time step can be calculated based on the Newmark-β scheme. 
5) Update the velocity and position of the structural boundary particles at 
each structural time step and the fluid particles at each fluid time step. 
 

 
Fig. 1 Schematic diagram of the partitioned coupling strategy between the 

fluid and structure domains 
 
Numerical wave generation 
 
According to the potential flow theory, a solitary wave consists of a single 
crest of infinite length. The profile of the solitary wave can be expressed 
as follows (Korteweg and De Vries, 1895): 

2sech ( ( ))A k x ctη = −  (22)
33 / 4k A H=  (23)

( )c g A H= +  (24)
where A is the water height, also is the wave amplitude for solitary wave. 
H, x and c denote the water depth, the horizontal coordinate and the wave 
speed, respectively. In this paper, the solitary wave is generated by a 
piston-type wavemaker, whose motion was described by Goring (1978). 
The speed of the wavemaker is formulated as: 
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Thus, the position of the wavemaker at time t can be expressed as: 
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The stroke length is calculated by the difference value between the 
wavemaker position at t = + ∞  and t = − ∞ : 

16
3
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The wave period is approximately: 
2 (3.8 )AT
kc H

≈ +  (28)

After one wave period, the wavemaker reaches its maximum position and 
then becomes still. 
 
NUMERICAL SIMULATION  
 
In this section, the interaction of 3D solitary wave interacting with a 
flexible horizontal plate is investigated based on aforementioned MPS-
FEM coupled method. Figure 2 shows the model of the numerical wave 
tank together with the plate. The tank is 2.00 m in length and the water 
depth (H) is 0.114m. As is shown, the left side of the tank is a piston-
type wavemaker that is employed to generate the solitary wave. A fixed 
support horizontal plate is installed in the middle of the tank.  
 

Fig. 2 Geometric model of the numerical wave tank 
 
Numerical wave generations 
 
Before studying the wave-structure interaction, it is of importance to 
examine the accuracy of the generated solitary wave, the verification is 
conducted in the numerical wave tank without the plate. The solitary 
wave, with different wave amplitudes (A), including A/H=0.2, 0.3, 0.4 
and 0.5, adopted in the simulations. The computational parameters are 
listed in Table 1. 
 
Table 1. The computational parameters of MPS 
 

Parameter Value 
Water density 1000 kg/m3 

Structure solver
Fluid solver 1

1 n k

n k
n i
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Kinematic viscosity 1×10-6 m2/s 
Gravitational acceleration  9.81 m/s2 
Particle spacing 0.0075 m 
Fluid number 82614 
Total number 156273 

 
The surface elevation at wave amplitudes of A/H= 0.2~0.5 is depicted in 
Fig.3. The comparison of the wave profile between the numerical 
simulation and the theoretical solution shows that the wave crest of the 
simulation agrees well with those presented by Goring (1978). 
 
Wave impacting onto flexible plate 
 
In this subsection, the interaction between the three-dimension solitary 
wave and a flexible plate is simulated with the help of the in-house 
MPSFEM-SJTU solver. Two dimensional FSI problems has been 
simulated using MPSFEM-SJTU solver by Zhang et al. (2018) and Rao 
et al. (2017), and the obtained results are well reliable. The structural 
parameter is shown in Table 2. The elastic modulus of the plate is 
50MPa. In addition, the distance between the bottom of the plate and the 
still water line (SWL) is defined as plate elevation (D), which can be 
altered by moving the plate vertically. In the simulations, the plate 
elevation (D) and wave amplitude (A) vary from case to case in order to 
investigate their effects on the wave-induced force on the plate. The 
dimensionless parameters of all the cases are shown in Table 3. 
 
Figure 4 shows the particular snapshots of the interaction between 
solitary wave and flexible plate under the condition of A/H=0.3, 
D/H=0.1. The calculated wave-induced force on the plate is shown in 
Fig. 5 and the displacement history in the middle of the plate is shown in 
Fig.6. It can be seen that the plate possesses a slight upward deformation 
immediately as the wave contacts the plate around t=1.62s. Then the 
wave crest hits the leading edge of the plate at around 1.82s, and the 
vertical force reaches maximum. The maximum vertical force lasts 
about one second with slight oscillation, until 1.92s. Subsequently, the 
deformation reaches the maximum, and the force begins to descend 
without evident oscillation. Finally, the plate suffered a negative vertical 
force after t=2.08s owing to the green water on the plate. It can be easily 

observed that the horizontal force is far less than vertical force, which 
indicates that the interaction between wave and plate mainly reflects in 
vertical slamming. 
 
Table 2. The computational parameters of FEM 
 

Parameters Values 

Structural density 1800 kg/m3 
Elastic modulus  50 MPa 
Thickness 0.001 m 
Poisson's ratio 0.3 
Damping coefficient α1 0 
Damping coefficient α2 0 
Element type 4-node thin plate element 
Element number 800 

 
Table 3. Configurations of the cases 
 

Case No. Amplitude (A/H) Elevation (D/H) 
1 0.2 0.06 
2 0.2 0.12 
3 0.3 0.06 
4 0.3 0.12 
5 0.3 0.18 
6 0.4 0.06 
7 0.4 0.12 
8 0.4 0.18 
9 0.5 0.06 
10 0.5 0.12 
11 0.5 0.18 

   

(a) A/H=0.2 (b) A/H=0.3 

(c) A/H=0.4 (d) A/H=0.5 
Fig. 3 The wave elevation on the wave gauge 
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To investigate the effects of the wave amplitude and plate elevation on the 
wave-induced force, especially the vertical slamming, the maximum value 
of vertical force history in each case is collected. It can be inferred in the Fig. 
7 that the maximum vertical force on the plate is approximatively in 
proportion to the wave amplitude under the same plate elevations, while the 
maximum vertical force decreases with the plate elevation increasing. 
Similar to the results from Liu (2016), the force increases at first with the 
ascending of elevation, then goes down. The discrepancy in smaller 
elevation is owing to the finite depth of tank. In addition, the comparison of 
vertical force history under different plate elevations is depicted in Fig. 8, 
the loading duration increases with the ascending of the amplitude and the 
descending of the elevation. Besides, evident oscillation during the rise of 
force can be observed in a greater elevation. 
 

 
Fig. 7 The maximum vertical force on the plate 

 

 
(a) t=1.62s (b) t=1.76s (c) t=1.82s 

 
(d) t=1.92s (e) t=1.98s (f) t=2.04s 

Fig. 4 Snapshots of wave-plate interaction (flexible plate) 
 

 
Fig. 5 wave-induced forces on the plate Fig. 6 displacement history on the middle of plate 

A/H=0.2 

A/H=0.3 

A/H=0.4 

A/H=0.5 
Fig. 8 History of the vertical force on the plate
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The influence of the structure flexibility on slamming 
 
In this subsection, the interaction between the solitary wave and a rigid 
plate is simulated with A/H=0.3, D/H=0.1. The result is compared with 
the flexible case in order to investigate the contribution of the structural 
flexibility to the wave-induced force and energy dissipation. Some 
particular snapshots in the selected simulation are given in Fig. 9. The 
history of wave-induced force on plate is shown in Fig. 10. It can be 
seen that at around t=1.62s the wave contacts the leading edge of plate 
and impacts the plate. When the wave crest hits the leading edge of plate 
at around 1.76s, the vertical force reaches maximum. At 1.82s, evident 
spray and wave breaking can be observed behind the plate, which 
dissipate energy from the system, resulting to a drastic drop in the curve 
of vertical force. 
 
Compared with the flexible plate’s counterpart, evident differences can 
be observed in the vertical force. For the rigid plate, it takes only 0.16 
second to reach the maximum vertical force, then the vertical force 
descends drastically with evident oscillation. However, in the flexible 
plate, the maximum vertical force lags slightly and lasts for one second 
with sight oscillation, besides, the maximum vertical force is lower than 
the rigid case. Then there is no obvious oscillation during the descending 
of the vertical force. The reason for these differences probably is that the 
upward displacement due to the impact provides a cushioning for wave 
to spend more time on suffusing the bottom of flexible plate, so it leads 
to the difference in loading time of vertical force. Moreover, it also 
results to a lower peak value for flexible plate. In addition, the 
comparison of horizontal force between rigid and flexible plate shows a 
fair agreement, while there are some evident oscillations in the flexible 
case.  
 
The velocity distribution of the fluid field is depicted in Fig.11. When 
the solitary wave has no contact with the plate, the velocity vector of the 
water particle is acclivitous, and when the wave contacts the plate, the 
velocity vector of water particle near the leading edge of the plate is 
almost perpendicular to the horizontal plate, in both two cases. However, 
the fluid under the plate presents evident difference. In the rigid plate, 
the velocity vector is basically parallel to the plate during the whole 
impact. While in the flexible plate, the velocity vector is inclined to the 
plate during the slamming stage, then the velocity vector is downward to 
the plate during the post stage, shown in Fig.11 (b ~ c). In addition, 
during the post stage, evident spray can be observed behind the rigid 
plate, which does not exist in the flexible plate. Besides, the velocity 
transmitting from the aft end of rigid plate is obviously smaller than that 
of flexible plate. The discrepancy of energy is the reason for the above 
difference. For the flexible case, energy transfer is mainly taken into 
account: During the slamming stage, the plate absorbs some of the wave 
energy due to the upward deformation, then it returns most energy to the 
fluid under the plate. While in the rigid case, energy dissipate is primary 

important: An evident spray behind the aft end of the plate during the 
post stage is an evident proof to the energy dissipate, as well as the 
smaller velocity transmitting from the aft end of plate. Consider the 
above reasons, during the impact, the energy is shown to dissipate, 
particularly in rigid plate. It illustrates that wave attenuation is more 
significant in the rigid case than the flexible case. It is similar to the 
results of the experiment of Nelli et al (2017). 
 

 

 
Fig. 10 History of wave-induced forces on plate

 
(a) t=1.62s (b) t=1.66s (c) t=1.76s 

 
(d) t=1.80s (e) t=1.92s (f) t=2.04s 

Fig. 9 Snapshots of wave-plate interaction (rigid plate)
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CONCLUSIONS 
 
In present paper, the interaction between the solitary wave and the 
horizontal flexible plate is numerically investigated based on 
aforementioned MPS-FEM coupled method. Based on the results of 
simulations, the following conclusions can be summarized as follows:  
 
The wave amplitude (A/H=0.2, 0.3, 0.4 and 0.5) and plate elevation 
(D/H=0.06, 0.12 and 0.18) are first taken into account to study their 
effects on the interaction. The results indicate that the maximum 
vertical force is in proportion to the wave amplitude, while the 
maximum vertical force decreases with the ascending of the elevation. 
In addition, the loading duration increases with the ascending of the 
amplitude, as well the descending of the elevation. Evident oscillation 
during the rise of force can be observed in a greater elevation. 
 
Subsequently, the wave-induced force is primarily focused in this 
research to study the effects of flexibility on wave-plate interaction. 
The interaction between the solitary wave and a flexible plate is 
simulated under the condition of A/H=0.3 and D/H=0.1, compared with 
the rigid plate. The discrepancies in vertical force help us clearly 
observe the contribution of the structural flexibility. In the flexible case, 
the upward displacement due to the impact provides a cushioning for 
wave to spend more time on suffusing the bottom of the plate, so it 
leads to the difference in loading time of vertical force. Moreover, it 
also results to a lower peak value for flexible plate. However, the 
comparison of horizontal force between rigid and flexible plate shows a 
fair agreement, which indicates that the interaction between wave and 
plate mainly reflects in vertical slumming. 
 
Simultaneously, the analysis of flow field for rigid and flexible plate 
shows the contribution of the structural flexibility to the energy. For the 
flexible case, energy transfer is mainly taken into account, while in the 
rigid case, energy dissipate is primary important. It illustrates that, the 
energy is shown to dissipate during the impact, particularly in rigid 
plate. So, wave attenuation is more significant in the rigid case than the 
flexible case. The conclusion is similar to the results of the experiment 
of Nelli et al (2017). 
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